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INTRODUCTION

Understanding gene expression 
patterns may provide insight into 
complex biological and pathological 
processes, as well as be predictive 
of disease outcome or therapeutic 
treatment (1,2). In recent years, micro-
array and real-time reverse transcription 
PCR (RT-PCR) analyses have gained 
popularity in evaluating messenger 
RNA (mRNA) expression. Microarray 
analysis is a genome-wide screening 
assay based on competitive dual-color 
hybridization that results in the simul-
taneous interrogation of thousands of 
mRNA species. Although microarray 
analysis is a powerful screening tool for 
establishing mRNA expression patterns, 
the extensive replicate sampling can be 
labor-intensive, sensitivity and dynamic 
range are small, and analysis of 
thousands of data points can be techni-
cally challenging. The high sensitivity, 
reproducibility, and large dynamic 

range of RT-PCR provides high-
throughput and accurate differential 
expression profiling of usually 10–20 
select genes (3,4). RT-PCR is exten-
sively applied to functional genomics, 
molecular medicine, diagnostics, 
forensics, virology, microbiology, and 
other biotechnology applications when 
simultaneous measurement of gene 
expression in many different samples 
from small amounts of starting material 
is required.

Although quantitative RT-PCR is 
a powerful tool in mRNA expression 
analysis, there are several variables 
that need to be controlled, such as 
RNA quality and quantity and enzyme 
efficiencies. Therefore, mRNA 
expression data are often normalized to 
internal reference genes. Some house-
keeping genes are used as reference 
controls for RT-PCR because they tend 
to be ubiquitously expressed (5–7). 
Since the expression of the target gene 
is normalized to such reference genes, 

it is essential to choose the appropriate 
reference gene(s) for accurate and 
reliable data analysis (8–10).

Commonly used housekeeping 
genes in real-time RT-PCR assays 
are β-actin (ACTB), glycerolaldehyd-
phosphate dehydrogenase (GAPDH), 
ribosome small subunit (18S) ribosomal 
RNA (rRNA), β-2 microglobulin 
(B2M), and hypoxanthine phosphori-
bosyltransferase (HPRT) (7,10). It is 
reported that the expression of house-
keeping genes can vary considerably 
under experimental conditions and 
thus pose problems when interpreting 
expression data (3,6,11). Suzuki and 
colleagues discussed the advantages 
and pitfalls of GAPDH and β-actin as 
control genes and emphasized precau-
tions associated with using these as 
normalizers (12). Vandesompele et 
al. showed that normalization based 
on a single housekeeping gene led to 
erroneous quantification with gene 
expression changes varying up to 3-
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fold in 25% of cases and 6.4-fold in 
10% of cases, while sporadic cases 
showed errors greater than 20-fold 
(13). 18S rRNA shows high sequence 
conservation among eukaryotes and 
prokaryotes and is relatively abundant 
compared with most other mRNA 
transcripts. This high abundance can 
make it difficult to accurately subtract 
the baseline value in real-time RT-PCR 
data analysis, therefore attenuation of 
the concentration of 18S primers/probe 
might be needed when quantification of 
weakly expressed genes is conducted 
(6,11,14). Without appropriate normal-
ization, expression profiles of target 
genes will likely be misrepresented 
(15). With increased gene expression 
profiling in preclinical research and 
toxicogenomics, a need for reference 
genes in rat has emerged; however, 
extensive studies in this area have not 
yet been conducted.

In this study, we selected 48 target 
genes based on putative invariability 
and examined their expression patterns 
in 11 rat tissues using the low density 
array (LDA) platform from Applied 
Biosystems. This platform allows the 
simultaneous assay of mRNA gene 
expression of up to 384 targets on a 
single card using only a small amount 
of RNA sample input and a fast setup 
procedure, therefore large numbers of 
transcripts can be expeditiously investi-
gated and assessed relatively simply.

MATERIALS AND METHODS

Tissue Collection, RNA Preparation, 
and cDNA Synthesis

Tissues from normal adult rats (three 
males, three females) were evaluated 
in this study. Following CO2 asphyxi-
ation and exsanguinations, animals 
were sacrificed in compliance with 
The Institutional Animal Care and Use 
Committee. Tissues were snap-frozen 
in liquid nitrogen and then stored at 
-80°C. Collected tissues included liver, 
adrenals, kidney, spleen, jejunum, 
thymus, lung, heart, brain, gastroc-
nemius muscle, pancreas, testis, and 
ovaries for a total of 72 test samples (six 
animals by eleven common tissues and 
two sex-related tissues). To insure that 
tissue samples were collected expedi-

tiously, the six animals were processed 
sequentially and to completion, and 
the problematic pancreatic tissue was 
always taken first. Total RNA was 
extracted from 30 mg each tissue using 
the RNeasy® Mini kit (Qiagen, Valencia, 
CA, USA). The tissues were first 
homogenized using the MagNA Lyser 
Green Bead tube (Roche Diagnostics, 
Indianapolis, IN, USA) with 1 mL ice-
cold lysis buffer on a FastPrep FP120 
homogenizer (Thermo Fisher Scientific, 
Waltham, MA, USA) three times (40 
s at max speed). A QIAshredder™ 
(Qiagen) was used to filter the homog-
enate to prevent clogging on the RNeasy 
column, and then the manufacturer’s 
recommended RNeasy protocol was 
followed to completion. All of the RNA 
samples were treated with DNase as the 
standard protocol at room temperature 
for 15 min. RNA was then quantified 
using the NanoDrop® ND-1000 UV-
VIS spectrophotometer (Agilent 
Technologies, Santa Clara, CA, USA). 
RNA quality was assessed on the 
Agilent 2100 Bioanalyzer with the 
RNA 6000 Nano LabChip® kit (Agilent 
Technologies), and the RNA integrity 
number (RIN) was calculated based on 
the entire electrophoretic trace of the 
RNA sample, including the presence 
or absence of degradation products 
(16). RNA is considered to be of high 
quality if no degradation products 
are observed in the electrophoretic 
trace. Subsequently, 1 μg high-quality 
total RNA from samples was reverse-
transcribed to cDNA using BD Sprint™ 
PowerScript™ Hexamer PrePrimed 
6 × 8 well (BD Biosciences, San Jose, 
CA, USA) in 20 μL volume at 42°C for 
90 min followed by 70°C for 10 min 
to inactivate the reverse transcriptase, 
according to the supplier’s protocol. 
One hundred nanograms reversed-
transcribed RNA were then loaded into 
each LDA port and used in real-time 
PCR assays.

Target Selection

An internal bioinformatics search 
[body map and GeneChip® data 
(Affymetrix, Santa Clara, CA, USA) 
on human and rat control tissues] 
identified several genes with low 
mRNA variability. Additionally, targets 
were selected from the literature among 

housekeeping and reference genes 
commonly used to normalize mRNA 
expression data. A total of 48 genes 
were selected and spanned a range of 
expression levels (high, medium, and 
low) in a given tissue.

TaqMan® LDA

TaqMan LDA microfluidic card 
technology from Applied Biosystems 
(Foster City, CA, USA) allows the 
simultaneous assay of mRNA gene 
expression of up to 384 targets on 
a single card. The LDA used in this 
study was custom designed to consist 
of 48 TaqMan Gene Expression Assays 
(Applied Biosystems) per loading port 
(48 genes × 8 samples = 384). Each 
reaction well contained all reagents 
specific for a given assay. Each target 
assay consisted of a forward primer, a 
reverse primer, and a TaqMan MGB 
probe (6-FAM dye-labeled) and are 
detailed in Table 1. Although most of 
the gene assays (36 out of 48) target 
exon-exon junctions to be mRNA-
specific, there are some assays that 
amplify genomic DNA (12 out of 48). 
Therefore, we treated all RNA samples 
with DNase. Several other controls were 
examined in these assays. No reverse 
transcriptase negative controls were 
performed for each RNA sample, to 
ensure that genomic DNA was removed 
and not amplified. The positive control 
was a commercial rat total RNA (BD 
Rat Universal reference total RNA, 
1 μg/μL; BD Biosciences) and was 
reverse-transcribed to cDNA along with 
the test samples. The negative controls 
consisted of no template (water).

For each tissue sample, 100 ng 
reverse-transcribed RNA were diluted 
to 50 μL with sterile water, combined 
with an equal volume of TaqMan 
Universal PCR Master Mix (2×; Applied 
Biosystems), mixed by inversion, 
and spun briefly in an Eppendorf® 
5415C microcentrifuge (Brinkmann 
Instruments, Westbury, NY, USA). 
After TaqMan LDAs were brought to 
room temperature, 100 μL master mix 
were loaded into each port connected 
to 48 reaction wells. LDAs were placed 
in Sorvall®/Heraeus® Custom Buckets 
(Applied Biosystems) and centrifuged in 
a Sorvall Legend™ centrifuge (Kendro 
Scientific, Asheville, NC, USA) for 
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1 min at 331× g followed closely by a 
second 1-min centrifugation at 331× 
g. Cards with excess sample in the fill 
reservoir were spun for an additional 1 
min. Immediately following centrifu-
gation, the cards were sealed with a 
TaqMan LDA Stylus Staker (Applied 
Biosystems), and the loading ports 
excised. The final volume in each well 
after centrifugation was <1.5 μL; thus, 
the final reverse-transcribed RNA 
concentration was approximately 1.5 
ng/reaction. Real-time RT-PCR ampli-
fications were run on an ABI Prism® 
7900HT Sequence Detection System 
(Applied Biosystems) with a TaqMan 
LDA cycling block and an automation 
accessory upgrade. Thermal cycling 

conditions were 2 min at 50°C, 10 
min at 95°C, followed by 40 cycles 
of denaturation at 95°C for 15 s and 
annealing and extension at 60°C for 1 
min. Each test sample was processed in 
duplicate on individual LDA cards, thus 
allowing four samples to be processed 
on each card. There were a total of 20 
LDA cards processed in three runs, and 
controls were included in each of the 
runs.

Analysis of Real-Time RT-PCR Data

RT-PCR TaqMan instrumentation 
monitors gene-specific products with 
fluorescent dye chemistry. A cycle 
threshold (CT) for each reaction is 

the number of cycles at which the 
reaction crosses a selected threshold. 
The threshold is defined as a straight 
line drawn above noise/baseline and 
positioned within the linear region of 
the semi-log amplification plot. The 
fewer cycles required to reach threshold 
fluorescence intensity, the lower the 
CT value and the greater the initial 
amount of input target (3). All samples 
for a given detector were analyzed 
concurrently using the ABI Relative 
Quantity Manager software (Applied 
Biosystems) automated algorithms for 
background, baseline, and threshold 
detection (see ABI 7900 User’s Guide 
and Reference 5). Manual confirmation 
of threshold detection was conducted 
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Figure 1. Strip plots representing cycle threshold (CT) values for tissues and messenger RNA (mRNA) targets for 12 selected genes. The plots represent-
ing the remaining 36 genes can be found in Supplementary Figure S1 available online at www.BioTechniques.com. Each circle represents a CT value from a 
sample replicate, so there are 12 circles for each tissue (six animals times two replicates, but six data points for sex tissues), unless data was treated as missing 
because the sample CT values exceeded 40. Each color represents an animal. Through visual inspection of the strip plots, it is clear that certain mRNA targets 
show greater tissue variability than do others. Additionally, variability among animals and between replicates is evident.
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for quality control purposes. We utilized 
CT number as input for our variability 
analysis among tissue samples for each 
target. Since we conducted 40 cycles of 
PCR, assays that did not yield a CT < 40 
cycles were treated as negative results 
and not included in further analysis. 
Results for each target on LDAs were 
quantified concurrently using the same 
baseline and threshold for a target gene 
in order to limit interplate errors in the 
analysis.

Variability of CT values was first 
examined through graphical visual-
izations (see Figure 2). To quantita-
tively assess the variability in the CT 
data, different sources of variability 
were identified and fitted into a linear 
random effect model as described 
below. Based on the design of the 
experiment, variability was partitioned 
among animals, tissues, and replicates 
for a given target. Equation 1 repre-
sents the components that contribute to 
the observed CT values

 [Eq. 1]
where Ctijk lg is the observed CT value of 
the ith tissue, jth animal, kth card, and 
lth replicate for the gene g. Parameter 
μg is the intercept, the true CT value 
of gene g for a reference group. All 
parameters are gene-specific except Ck. 
Ck is a card-specific effect that is added 
to all genes on the same card and is a 
systematic effect for which we would 
like to adjust through normalization. Tig 
is the effect of tissue i, Ajg(i) is the effect 
of animal j for tissue i, and eijk lg is the 
random error for the lth replication.

The card-specific variability Ck 
explains a small part (due to card) of the 
overall systematic variability that the 
reference control genes are intended to 
remove. The systematic variability due 
to sample is still included in the gene-
specific sample terms in Equation 1. 
Since the systematic sample variability 
will be the same for all genes, it 
should have very limited effect for the 
comparison of the gene-specific sample 
variability’s between genes.

The model in Equation 1 is 
commonly fitted with a three-way 
analysis of variance (ANOVA) model 
where effects are assumed to be fixed 
parameters, and the variability of 
each factor is derived from the sum 

of squares associated with each term. 
However, this fixed effect model 
does not provide a direct estimate of 
variability associated with each term; 
it either depends on the order of the 
effect entered in the model or does 
not sum up to the total. So, we fit 
Equation 1 with a two-step approach, 
similar to what Littell, Wolfinger, and 
coworkers (17) used for microarray 
gene expression data. In the first step, 
a fixed effect model 1 is fitted to obtain 
the card-specific effect estimate  Ĉk, and 
subsequently the card-specific effect 
is removed from the data to obtain 
a card-normalized CT value Ct′ijk lg 

 

[Eq. 2]
In the second step, we fit a random 

effect model to the normalized CT 
values for each gene target separately. 
 
 

[Eq. 3]
Effects A and T are assumed 

from normal distributions, Tig ∼ 
N(0,σ 2Tg ) and Ajg(i) ∼ N(0,σ 2

Ag 
). The error 

e is assumed to be normally distributed, 
eijk lg ∼ N(0,σ 2g 

). The parameters σ 2Ag , 
σ 2Tg, and σ 2g  in this model describe the 
variability associated with animal, 
tissue, and replicate effect, respectively, 
and are estimated using the restricted 
maximum likelihood (REML) method 
(17). Furthermore, we assume that the 
terms in Equation 3 are independent 
of one another. Under these assump-
tions, the variability of CT is a sum of 
variability of all its components.

 
 

[Eq. 4]
Compared with a fixed effect model 

approach, the random effect model has 
several advantages: (i) it provides a 
direct estimate of the variability from 
each source; (ii) it does not depend 
on how the effects are ordered in the 
model; and (iii) the total variability is 
the sum of variability as in Equation 4. 
Although the assumption of normality 
may not hold for some effects, in those 
cases the estimated variance param-
eters still provide a descriptive measure 
of the variability associated with the 
effects. Random effect models are fitted 
using SAS® PROC MIXED.

RESULTS

RNA Quality and Yield

Most RNA samples from rat tissues 
in this study were of high quality and 
yield with the exceptions of pancreas 
and gastrocnemius muscle (data not 
shown). Most of the tissue samples 
generated a range of 20–100 μg total 
RNA from 30 mg of each tissue. The 
260/280 ratios of the RNA samples 
were approximately 2, and RIN 
numbers were near 9 for most samples. 
RIN normally ranges from 1–10, with 
an RIN above 7 considered to be indic-
ative of high-quality RNA. All RNA 
samples from pancreas were extremely 
degraded (RIN was around 2); this is a 
common issue in this tissue due to its 
inherently high RNase activity. RNA 
quality from gastrocnemius muscle was 
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Figure 2. Difference versus mean cycle threshold (CT) of replicates. The dashed lines correspond to a 
coefficient of variation (cv) of 10%.
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high, but yield was low (<1 μg RNA for 
most samples). This was most likely 
due to difficulties in tissue lysis from 
incomplete disruption of the connective 
components in this tissue and thus 
made it impossible to fairly evaluate 
the expression of all 48 gene targets. 
Therefore, the pancreas and gastroc-
nemius muscle samples were excluded 
from comparative expression analysis. 
In all of the no reverse transcriptase 
control reactions, no amplification of the 
48 gene targets was measured, implying 
a lack of contribution of genomic DNA 
to the final expression data.

mRNA Expression Analysis

Expression analysis was conducted 
on the remaining 60 samples from 11 
tissues and 6 animals (two tissues are 
sex-specific). The RT-PCR expression 
data for the 48 genes were acquired 
and quantified as described. The strip 
plot (Figure 1) illustrates the dynamic 
range and variability of CT measure-
ments among samples and animals for 
all mRNA targets. The display of CT 
values indicates that certain genes have 
greater expression variability among 
tissues than do others.

To examine the reproducibility of 
our results, duplicates of each sample 
were run simultaneously on the same 
card. Figure 2 displays the difference 
in CT values of replicates relative to 
their means, most of which (>95% of 
data) fall within a 10% coefficient of 
variation (cv). This is an acceptable 
level of intra-assay variability, therefore 
LDA assay precision was considered 
high for the 48 mRNA targets (18). 
CT values of 40 (e.g., some data from 
Aqp2, Hspa4, S100a3) were treated as 
missing data and excluded from further 
analysis.

A two-step modeling approach was 
used to evaluate sources of variability. 
Originally we included a gene-specific 
gender effect in the model, since there 
are three male and three female rats used 
in the study. The results indicate a very 
small gender effect for all mRNAs (data 
not shown). The variability of CT values 
due to gender is <1% of the variability 
due to tissues for almost all mRNAs 
when comparing the sum of squares 
in a fixed effect model. The variability 
estimate of the gender effect is mostly 

zero or close to zero in the random effect 
model. Therefore, the negligible gene-
specific sex effect was not included in 
the model for simplicity. Figure 3 repre-
sents the variance component estimation 
based on normal theory for each of 
the 48 mRNAs with total CT variance 
partitioned among the three sources 
and represented in bar graph format. 
The tissue component accounted for 
the majority of variability in the data 
for a given mRNA. In most cases, the 
animal component accounted for the 
second most variability followed by the 
replicate component (tissues > animals 
> replicates). The fact that the replicate 
component contributed relatively 
little to the total variance for a given 
mRNA further confirmed acceptable 
assay precision (19). These results are 
consistent with the strip plots (Figure 
1) that visually depict the raw data. 
Most genes have comparable overall 
variability, with standard deviations 
between 1 and 2 (data not shown). The 
majority of genes display medium levels 
of expression with CT values between 
20 and 30. The 18S mRNA is the most 
abundant and least variable target. In 
contrast, S100a3 shows low variability 
but also low abundance. As would be 
expected with low expresser targets 
such as S100a3, there were missing data 
points for some of the tissues.

As an indirect way to validate our 
approach above, we grouped the 48 
genes into three equal-sized groups 
based on their tissue CT variability. 
The first group has the 16 genes with 
smallest tissue variability, and the third 
group has the largest tissue variability, 
with the second group in between. If 
the three groups of genes are used as 
an endogenous control (pooled for 
each group) to normalize all data, the 
ΔCT variability of the 48 genes should 
be the smallest when the first group is 
used as the normalizer, while the ΔCT 
variability should be largest if the data 
are normalized by the third group. 
When the three groups of genes are used 
as normalizers, the median standard 
deviations of ΔCT of all genes are 1.18, 
1.31, and 2.94, respectively, which in 
some degree validates our assessment 
of variability in the housekeeping genes 
based on their CT values.

The level of expression among 
putative endogenous controls varies 

widely in different tissues and 
therefore presents a problem for data 
analysis. For example, examination of 
the average CT values among the 48 
targets (Figure 3) reveals an approx-
imate 16,000-fold difference between 
the most (18S) and least abundant 
(S100a3) transcripts. Furthermore, 
examination of the strip plots (Figure 
1) indicates that some mRNAs are 
expressed at a relatively high and 
constant levels in select tissues (e.g., 
Alb:liver; Gfap:brain; Aqp2:kidney) 
while variable and low expressing in 
other tissues. Some of this variability 
may be due to systematic sample 
variability; however, the majority is 
not, because other genes do not show 
similar changes among these tissues.

DISCUSSION

There are a number of reviews and 
research papers evaluating the selection 
and effect of controls on normalized 
gene expression data, however, most of 
them derive from expression analysis in 
human samples (4,7,15). With increased 
gene expression profiling in preclinical 
research and toxicogenomics, there is 
an urgent need for rigorous validation 
of reference genes in experimental 
animal model systems. A recent paper 
has discussed the validation of canine 
reference genes for gene expression 
in that species (20). The study of rat 
reference genes for gene expression 
has not yet been thoroughly evaluated. 
Routinely, high-quality quantitative gene 
expression data are often normalized 
relative to a reference control gene. 
Therefore, it is critical to choose an 
appropriate reference control gene(s) for 
normalization so as not to misrepresent 
the expression profile of a target gene 
(11). Since no single reference gene is 
optimal for all studies, the selection of 
an appropriate control gene for a given 
study is key, especially among complex 
multiple tissue and treatment regimens 
(9). In our study, we evaluated the 
expression levels for 48 genes across 
a panel of rat tissues to select potential 
reference genes for normalization of 
mRNA expression data.

The first step in any mRNA 
expression analysis study is to confirm 
the quality and yield of RNA from the 
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Table 1.  48 mRNA Targets Included on the Low Density Array
Gene 
No.

Gene 
Symbol Gene Name Accession No.

Assay 
Location
(nt)

ABI Gene Expression 
Assay No.

1 FLJ20445 Hypothetical protein XM_215286 1100 Rn01454146_m1
2 Sart1 Squamous cell carcinoma antigen recognized by T-

cells 1
NM_031596 481 Rn00580979_m1

3 FLJ10587 Hypothetical protein BF411321 2400 Rn01456650_m1
4 COP9 COP9 constitutive photomorphogenic homolog sub-

unit 6 (Arabidopsis)
XM_222002; 
AI409481

589 Rn01528050_g1 

5 RNA-bp RNA binding protein BG375054; 
BI294261

473 Rn01482572_m1

6 Hspa4 Likely ortholog of mouse heat shock protein, 70 kDa 4 BE101732 439 Rn01477779_m1
7 FLJ10498 Hypothetical protein BF394953 388 Rn01414061_m1
8 Epo Brain Zn-finger protein (LOC362154) BF550329 463 Rn01515220_g1  
9 AP82 Acidic 82 kDa protein mRNA BF410997 1551 Rn01521658_m1  
10 Ring1 Ring finger protein 1 BI300772 1041 Rn01429212_g1
11 SRP14 Signal recognition particle 14 kDa (homologous Alu 

RNA binding protein)
AA799994 106 Rn01485827_g1

12 HP1-BP74 Rattus norvegicus Unknown (protein for 
MGC:72624), mRNA (cDNA clone MGC:72624 IM-
AGE:5599940), complete cds.

BC061837 1197 Rn01519754_m1

13 Stau Staufen NM_053436 169 Rn00584855_m1
14 GAPDH Glyceraldehyde-3-phosphate dehydrogenase X02231 327-377 Rn99999916_s1 
15 RPL10a Ribosomal protein L10A NM_031065 334 Rn00821239_g1 
16 Ppib Cyclophilin B NM_022536 251 Rn00574762_m1
17 L32 Ribosomal protein L32(Rpl32) est594385; X06483 421 Rn00820748_g1 
18 PPIA Peptidylprolyl isomerase A (Cyclophilin A) M19533 228 Rn00690933_m1
19 ActB Actin, β NM_031144 888 Rn00667869_m1 
20 RPL19 Ribosomal protein L19 AA800054; 

NM_031103
266 Rn00821265_g1 

21 Nedd4a Neural precursor cell expressed, developmentally 
down-regulated gene 4A

U50842 2564 Rn01530544_m1 

22 Slit1 Slit homolog 1 AB017170 232 Rn01444575_m1
23 Rabin3 Rabin 3 NM_017313 531 Rn00568959_m1 
24 Ggcx γ-Glutamyl carboxylase NM_031756 803 Rn00582138_m1
25 Mapk14 Mitogen activated protein kinase 14 NM_031020 125 Rn00578842_m1
26 Map2k5 Mitogen activated protein kinase kinase 5 NM_017246 412 Rn00568384_m1
27 Hmbs Hydroxymethylbilane synthase NM_013168 356 Rn00565886_m1
28 Gapds Glyceraldehyde-3-phosphate dehydrogenase type 2 NM_023964 530 Rn00576699_m1
29 B2m β-2 microglobulin NM_012512 71 Rn00560865_m1
30 Jak2 Janus kinase 2 NM_031514 133 Rn00580452_m1
31 Gusb Glucuronidase, β NM_017015 1390 Rn00566655_m1
32 Map3k1 Mitogen activated protein kinase kinase kinase 1 NM_053887 1316 Rn00588007_m1
33 Pde3a Phosphodiesterase 3A NM_017337 1004 Rn00569192_m1
34 Mapk6 Mitogen-activated protein kinase 6 NM-031622 1089 Rn00581152_m1
35 S100a3 S100 calcium binding protein A3 NM_053681 39 Rn00586633_m1
36 Rpn1 Ribophorin I NM_013067 328 Rn00565052_m1
37 Tabu1 Tubulin NM_022298 71 Rn01532518_g1
38 TFRC Transferrin receptor rCT52708 569 Rn01474701_m1
39 HPRT1 Hypoxanthine guanine phosphoribosyl transferase M63983 486 Rn01527838_g1
40 Ubd Ubiquitin D NM_053229 79 Rn00583977_m1
41 alb α Albumin NM_134326 716 Rn00592480_m1
42 GFAP Glial fibrillary acidic protein NM_017009 1189 Rn00566603_m1
43 Tnni1 Troponin I, slow isoform NM_017184 235 Rn00567843_m1
44 AQP2 Aquaporin 2 NM_012909 486 Rn00563755_m1
45 PGK1 Phosphoglycerate kinase 1 NM_053291 1019 Rn00821429_g1
46 Rpl13a Ribosomal protein L13A NM_173340 272 Rn00821946_g1
47 TBP TAF9-like RNA polymerase II, TATA box binding pro-

tein (TBP)-associated factor, 31 kDa (Taf9l )
NM_133615 478 Rn00592425_m1

48 18S Eukaryotic 18S rRNA X03205  Hs99999901_s1

mRNA, messenger RNA; nt, nucleotide; rRNA, ribosomal RNA.
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processed tissues, because RNA is less 
stable than DNA in normal working 
conditions. RNA degradation and 
transcriptional induction can occur 
immediately after harvesting of the 
biological sample (21). Due to poor 
quality and low yield of RNA, pancreas 
and gastrocnemius muscle samples were 
excluded from comparative expression 
analysis. In the future, alternative 
extraction methods may be evaluated 
to improve RNA quality and yield from 
muscle and pancreas tissues.

Other considerations for accurate 
real-time PCR also include evaluations 
of assay efficiency, assay variation, 
and potential assay inhibition (22). 
A recent report on the evaluation of 
LDA technology indicated that gene 

expression measurements conducted 
with LDAs are highly reproducible and 
precise, both within and across arrays. 
Comparisons between LDAs reveal low 
variability, with correlation coefficients 
close to 1.0 (19). Although our study 
was not designed to look at the assay 
inhibition, it is interesting to note the 
breakdown of the variance analysis by 
tissue, animal, and replicate-specific 
components reports indirectly on any 
influence by an assay inhibitor. Figure 
3 clearly shows that the tissue variance 
outweighs any assay-specific effects.

In normal rat tissues, nearly two-
thirds of the 48 mRNA targets showed 
relatively low expression variability 
among replicates, tissues, and animals; 
and thus, are considered good candidates 

to be selected as reference controls. 
However, it is impossible to predict 
how different experimental conditions 
may affect the expression of putative 
normalization genes. When measuring 
gene expression under different experi-
mental conditions (e.g., drug treat-
ments, diseases, etc.), this subset of 
mRNAs should be further evaluated so 
as to select the best reference gene(s) for 
specific experimental conditions. When 
examining gene expression patterns 
among multiple tissues/treatment 
groups, it is imperative that the same 
normalization strategy be applied to 
all tissues types, in order to reduce 
the number of experimental variables 
and allow direct comparison between 
samples. In other words, the same set of 
control genes should be used for normal-
ization among tissues and groups, if 
possible (13).

We analyzed tissue-specific gene 
expression profiles and listed the five 
control genes for each tissue showing 
the least ΔCT variability within the 
tissue (Table 2). The rank is based on 
the standard deviation of ΔCT (data not 
shown) calculated by normalizing to 
a pooled average of the 36 genes (see 
Figure 3) showing the least variable 
expression in CT. For example, B2M 
is a good potential reference gene for 
liver, but not a good one for heart. This 
suggests that different reference gene(s) 
or biomarkers may be used when a given 
tissue is studied. The reference gene 
should also be of similar abundance 
to the gene of interest. For 18S, which 
is shown as the most stable gene in 
the overall variability assessment in 
Figure 1, but is not in any of the top 
organ-specific gene lists in Table 2, 
the abundance is so high that it in fact 
explains its overall stability. This can 
also be seen from Figure 1. Assay 
attenuation of 18S is not possible due 
to the nature of LDA technology, as all 
the gene assays are preloaded on the 
plate and there is no chance to further 
optimize the abundance of the gene 
assay to the target gene level. Therefore, 
18S is decidedly not the best reference 
gene within a tissue or in its potential 
ability to respond to experimental condi-
tions, due to its high abundance.

Normalization based on a single 
reference gene without validation 
can lead to erroneous results (11). 
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Figure 3. Variance component estimation based on normal theory for each messenger RNA 
(mRNA). Total cycle threshold (CT) variance is partitioned among three sources. The bar graphs are 
arranged from left to right to show lowest to highest CT variance. Through visual inspection of the data, 
it is evident that in most cases the majority of CT variance is attributable to differences among tissues. 
The number on top of each bar represents the mean CT for all analyzable samples for a given target. The 
first bar to the left was derived from pooling data among the four mRNA targets showing the lowest total 
CT variance.

Table 2. Top Five Control Genes Recommended for Each Tissue 
Organ Selection 1 Selection 2 Selection 3 Selection 4 Selection 5

Liver B2M Pgk1 Rpn1 Ggcx FLJ20445

Kidney Pgk1 Ring1 ActB Gapd Mapk14

Brain Mapk6 Gapd Rp10a TFRC Map2k5

Heart Rpl10a COP9 Gapd Ppib Hmbs

Lung Rpl10a Mapk14 FLJ20445 Taf91 Map2k5

Spleen Ppib Tuba1 COP9 Taf91 Rpl19

Jejunum FLJ20445 Rpl10a MGC72624 Tuba1 FLJ10498

Adrenals Rpl19 Mapk14 Nedd4a FLJ10586 Ggcx

Thymus Rpl10a Hprt Pgk1 Gusb COP9

Testis B2M FLJ10498 RABIN3 Rpl10a SRP14

Ovaries Actb Ppib COP9 FLJ20445 Epo
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Different methods for identifying the 
most suitable combination of control 
genes have been proposed. Recent 
studies using the geometric mean and 
pair-wise comparison from multiple 
housekeeping genes suggest that to 
accurately measure gene expression, 
normalization to multiple housekeeping 
genes is essential when many target 
genes are assayed (13). A recent report 
by de Kok and colleagues details the 
calculation and application of the mean 
expression from multiple housekeeping 
genes (7). Evaluating the approach of 
using multiple reference controls, our 
analysis has shown that by pooling the 
four least variable genes (18S, Hmbs, 
FLJ20445, Mapk14), variation within 
the pooled data was less than any one 
of the four genes (Figure 3). However, 
underpinning the increased confidence 
achieved with pooling of a small number 
of reference genes for normalization 
is the critical fact that each and every 
reference control gene should be experi-
mentally validated in the test system 
under study. Our approach represents a 
first step in that direction.

Under conditions where samples are 
limited, such as in an early developing 
embryo or a minute biopsy sample, it 
might not be prudent to prescreen exper-
imental material to select a reference 
gene to use in normalizing expression 
data. In such a case, preselection of a 
battery of reference genes known to vary 
minimally among tissues would reduce 
the likelihood of the expression levels of 
target mRNAs being skewed by a single 
gene, the expression of which varies 
under the experimental conditions in 
question. By normalizing across several 
select reference genes and estimating 
the inherent component variance, 
the potential negative impact on the 
accuracy of relative gene expression 
data would be minimized. This approach 
would allow more rapid gene expression 
data collection in the pharmaceutical 
setting and supply a downstream data 
analysis tool to support the selection of 
the best reference genes for the study in 
question.

The number of genes used to 
normalize mRNA expression data are 
a trade-off between practical consid-
erations and assay validity within an 
experimental design. For example, it 
might not be reasonable to use numerous 

reference controls when only a few 
mRNAs are to be studied in normal 
tissues, especially when sample template 
availability is limiting. If the goal is to 
select a single normalization gene, the 
control and mRNA(s) of interest should 
be expressed at similar levels, and the 
control should not vary under experi-
mental conditions (6,11,23). However, 
if the expression of many genes is to be 
evaluated among numerous tissue and/
or treatment groups, it may then become 
necessary to assay multiple reference 
controls for normalization of the data.

Although the primary purpose of 
this study was to assess the variation 
of reference control genes in various 
tissues, the same rules can also be 
applied to other experimental condi-
tions, such as in vitro assays. We have 
several in-house programs utilizing 
our rat reference LDA cards that have 
successfully uncovered the reference 
genes that remained stable under each 
study’s complicated conditions. The 
commonly used housekeeping genes, 
like β-actin and GAPDH, were not 
appropriate selections for the experi-
ments in question. We have success-
fully applied one to six internal controls 
for gene expression analysis (data not 
shown) for a number of programs, each 
based on experimental design. From our 
experience, we feel strongly that the use 
of a battery of reference genes within 
the LDA format not only expedites 
the selection of custom endogenous 
controls but also improves the quality of 
the gene expression data. Therefore, we 
recommend that the use of the reference 
control LDA card and the analysis of 
component variance, within an appropri-
ately normalized real-time experiment, 
is the first step to confident quantitative 
RT-PCR gene expression data.
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